
Hill Space is All You Need

Justin DuJardin
justin@dujardinconsulting.com

Abstract
We characterize "Hill Space"—the constraint topology created by W = tanh(Ŵ) ⊙ σ(M̂), where
⊙ denotes element-wise multiplication—as a systematic framework for discrete selection in
neural networks. This constrained parameter space enables mathematical enumeration: optimal
weights for discrete operations can be calculated rather than learned, transforming primitive
discovery from optimization-dependent exploration into systematic cartography.

Hill Space creates stable plateaus where neural networks reliably converge to discrete weight
configurations such as [1,1] and [1,-1], enabling precise mathematical operations. We
demonstrate this across arithmetic and trigonometric operations, achieving high precision with
deterministic convergence.

We achieve high precision across arithmetic and trigonometric operations, with models
converging deterministically regardless of random seed (±0.5 epoch variance across runs). The

constraint topology enables aggressive learning rates and extreme extrapolation with accuracy
limited primarily by floating-point precision and activation saturation rather than optimization
failures.

Our key discovery is that Hill Space enables systematic exploration of discrete selection
problems through direct weight manipulation rather than training. We demonstrate this
methodology using mathematical operations as a clean test domain, establishing a foundation
for neural networks that perform reliable discrete selection through principled constraint design.

1. Introduction
Neural networks lack systematic methodologies for discrete selection problems where optimal
solutions can be enumerated and verified. While optimization approaches like softmax work
well for classification within training distributions, they lack principled methods for characterizing
selection spaces or ensuring reliable convergence across extreme ranges.

We discover that the constraint W = tanh(Ŵ) ⊙ σ(M̂)—originally introduced in NALU [Trask et
al., 2018] for neural arithmetic—creates a unique parameter topology we term "Hill Space." This
constrained environment transforms discrete selection from optimization-dependent exploration
into systematic mathematical cartography.

Hill Space's key property is enumeration: optimal parameters for discrete operations can be
calculated rather than learned. Instead of hoping optimization finds the right solution, we can
directly probe the constraint space to discover what discrete selections are possible and how
they relate to each other.

We demonstrate this methodology using arithmetic and trigonometric operations as our test
domain. These provide clean, interpretable examples where "correct" answers are
unambiguous, making them ideal for characterizing Hill Space's properties. Mathematical
operations also offer the advantage of extreme extrapolation testing—we can verify that learned
selections work correctly far beyond training ranges.

The constraint topology creates stable plateaus where neural networks reliably converge to
discrete mathematical selections. This enables a new approach to primitive discovery: rather
than training multiple models and hoping they converge to useful operations, we can enumerate
possible weight configurations, test what mathematical transformations emerge, then verify
trainability. This transforms the exploration of discrete selection spaces from exponential search
problems into linear enumeration tasks.

This work establishes Hill Space as a systematic approach to 2-dimensional discrete selection
problems, demonstrated through mathematical operations requiring 2 parameters for selection.

The methodology applies to discrete selection problems sharing these structural properties:
enumerable optimal solutions and primitive-expressible transformations.

2. Hill Space: A Framework for Discrete Selection
Hill Space constrains neural network weights using:

This creates a bounded parameter space where weights naturally converge to discrete
selection values. The tanh function bounds weights to [-1, 1], while the sigmoid provides
learnable selectivity.

We term this constrained parameter space "Hill Space" in recognition of Felix Hill's foundational
contributions to neural arithmetic through NALU [Trask et al., 2018], and for the characteristic
hill-like topology created by the constraint function's stable plateaus and gradient landscapes.

2.1 Learning Dynamics
Optimization consistently converges to saturation regions that produce stable discrete
selections. The constraint topology creates large stable zones where tanh and sigmoid
functions achieve near-unity values (typically 0.999999+), with some cases converging so
deeply into saturation that effective weights reach exactly 1.0 despite the theoretical bounds of
the activation functions.

Overfitting Immunity: With only 2 parameters per operation, models fundamentally lack
capacity to memorize training patterns. This relaxes traditional deep learning concerns: reduced
need for data shuffling, regularization techniques, and validation monitoring. Improving training

W = tanh(Ŵ) ⊙ σ(M�)

loss becomes a strong indicator of convergence toward true discrete selection rather than
potential overfitting.

Deterministic Convergence: Correct primitive formulations lead to precise discrete selections
regardless of random initialization. Different starting points may follow different optimization
paths, but all converge to nearly identical solutions, making convergence nearly inescapable
with proper primitive design.

Initialization Robustness: Zero initialization is particularly effective in Hill Space because
tanh(0) * sigmoid(0) = 0 creates a neutral starting state that avoids biasing toward any
operational plateau. Empirical testing revealed that small random initialization (±0.02) also
works well, while larger values (±10) create degeneracy by starting too close to saturation
plateaus, effectively pre-selecting random operations before optimization begins. This
initialization sensitivity demonstrates Hill Space's structured topology—the constraint function
naturally guides optimization toward discrete selections from appropriate starting regions.

This enables:

Failure modes are diagnostic:

The bounce-back case suggests the need for a different primitive or space formulation rather
than forcing optimization into Hill Space's unstable regions.

2.2 Scope and Limitations
Hill Space excels at discrete selection tasks but has clear boundaries. The constraint
topology functions as a selector mechanism that selects which transformation to apply rather
than performing internal computations.

Ideal for: Operations expressible as discrete choices between pre-defined transformations. Hill
Space weights naturally converge to values like [1,1], [1,-1], [1,0], and [-1,0], enabling selection
between different mathematical operations within each primitive.

Aggressive learning rates that converge rapidly
Training that either succeeds completely if your primitive formulation captures the target
selection, or fails in predictable ways

Flatline: Loss plateaus almost immediately and varies only by floating-point noise,
indicating the primitive cannot currently represent the target operation
Bounce-back: Loss initially improves then degrades (resembling overfitting), indicating the
required weights may fall in Hill Space's problematic center where fractional weight values
cluster tightly together near gradient dead-zones.

Not Ideal for: Operations requiring internal computation, continuous regression tasks, and
operations requiring weight values that exist near Hill Space's gradient dead zones.

This specialization is a feature, not a bug—Hill Space achieves precision within its domain by
focusing exclusively on learnable discrete transformations that can be expressed through unit-
scale transformation matrices.

2.3 Enumeration Property
Hill Space's saturation-based discrete selections enable direct exploration without
optimization. Since optimal discrete operations require specific binary selections, their optimal
weights can be calculated rather than learned.

Enumeration Strategy: For any primitive formulation, optimal weights can be directly set to
saturation values corresponding to desired discrete selections. While we recommend ±15 for
guaranteed deep saturation, in practice PyTorch's floating-point representation results in tanh
reaching 1.0 at values ≥6 and sigmoid at values ≥10 (for both float32 and float64), as values
closer than machine epsilon to 1.0 are represented as exactly 1.0:

Immediate Discovery: This transforms primitive exploration from training-dependent
optimization into systematic probing. Set the theoretically optimal weights, test what
transformation emerges, then verify trainability through standard optimization.

Scope Limitation: This enumeration property only applies to discrete operations with
definitive correct answers. For approximate operations, heuristic combinations, or continuous
regression tasks, optimal configurations cannot be predetermined, requiring traditional
optimization approaches.

Research Methodology: The enumeration property provides a systematic framework for Hill
Space exploration: establish operation existence through direct weight setting, characterize the
transformation, then demonstrate trainability. This approach scales linearly with target
operations rather than exponentially with weight dimensions.

2.4 Snapping Activations
Hill Space relies on tanh and sigmoid functions reaching saturation values for perfect discrete
selection. When functions don't achieve exact saturation, small approximation errors can
accumulate. We address this through snapping activations that map near-saturated values to
exact targets:

def snapping_tanh(x, precision_threshold=1e-6):

raw_tanh = torch.tanh(x)

upper_snap_mask = raw_tanh > (1.0 - precision_threshold)

While we have not extensively studied the shift in learning dynamics introduced by snapping
activations, significant convergence acceleration was observed during optimization. Snapping
can be applied during training for guaranteed exact discrete values, or deployed only during
inference to preserve standard gradient flow while achieving exact results in deployment.

3. Hill Space Mathematical Primitives
We demonstrate Hill Space's discrete selection capabilities using mathematical primitives as
our test domain. Building on NALU's [Trask et al., 2018] foundational additive and exponential
primitives, we show these operations achieve high precision through Hill Space's constraint
topology. We then introduce two novel trigonometric primitives, testing the generality of the
discrete selection framework.

Mathematical operations provide an ideal testing ground for Hill Space because they have
unambiguous correct answers, enabling clear validation of the discrete selection methodology
across different primitive formulations.

3.1 Additive Primitive
The additive primitive demonstrates Hill Space's discrete selection using matrix multiplication
for linear operations. Four stable selections emerge: addition [1,1], subtraction [1,-1], identity
[1,0], and negation [-1,0].

lower_snap_mask = raw_tanh < (-1.0 + precision_threshold)

result = raw_tanh.clone()

result[upper_snap_mask] = 1.0 # Exact unity!

result[lower_snap_mask] = -1.0 # Exact negative unity!

return result

def snapping_sigmoid(x, precision_threshold=1e-6):

raw_sigmoid = torch.sigmoid(x)

upper_snap_mask = raw_sigmoid > (1.0 - precision_threshold)

lower_snap_mask = raw_sigmoid < precision_threshold

result = raw_sigmoid.clone()

result[upper_snap_mask] = 1.0 # Exact unity!

result[lower_snap_mask] = 0.0 # Exact zero!

return result

Input Vector

[
1339.25

2.25
]

1×2

×

Weight Vector

[1 -1]
2×1

from Hill Space

=

Subtraction

Model Prediction

1337.000000

Calculator Says (subtract)

1337.000000

Error

0.00e+0

Machine precision!

1339.25 - 2.25
from Hill Space

Step-by-Step Solution:

1 1339.25 × 1 = 1339.3

2 2.25 × -1 = -2.3

3 1339.3 + -2.3 = 1337.0

The constraint topology guides optimization toward these optimal discrete configurations,
achieving near-exact precision with only 2 parameters.

3.2 Exponential Primitive
The exponential primitive demonstrates discrete selection through exponentiation operations.
Four selections have proven stable and learnable: multiply [1,1], divide [1,-1], identity [1,0], and
reciprocal [-1,0]. Other exponential operations such as powers and roots exist with the same
precision, but remain unstable for reliable learning, clustering tightly at plateau intersections in
Hill Space.

Input Vector

[1.33 2.173]

×
Weight Vector

[1 1]

Hill Space

→
Exponential Operations

1.33 ^ 1 × 2.173 ^ 1

1.3 × 2.2

=

Multiplication
Model Prediction

2.890090

Calculator Says

2.890090

Error

0.00e+0

Machine precision!

1.33 × 2.173
from Hill Space

Step-by-Step Solution:

1 1.33 ^ 1 = 1.3

2 2.173 ^ 1 = 2.2

3 1.3 × 2.2 = 2.890

def additive_primitive(a, b, weights):

return torch.matmul([a, b], weights)

def exponential_primitive(x, weights):

W = torch.tanh(weights[0]) * torch.sigmoid(weights[1])

Implementation: Complex128 arithmetic eliminates NaN generation from negative bases with
fractional exponents while achieving machine-precision accuracy. Our comprehensive error
analysis (Section 4.4) demonstrates that complex128 operations introduce essentially zero
additional error beyond floating-point limitations—5.8e-16 additional MSE for Float64
multiplication, representing theoretical optimality.

Hill Space's exponential operations achieve mathematical precision limited only by IEEE
floating-point representation, with complex arithmetic providing both numerical stability and
exact results across the complete range of discrete selections.

3.3 Unit Circle Primitive
The unit circle primitive demonstrates discrete selection for trigonometric operations by
projecting inputs onto the unit circle. Weight selection determines which trigonometric function
to apply: cos (1.0), sin (-1.0), or their mixture (0.0), along with phase shift control.

Input Angle

42°
0.733 rad

→

Unit Circle Projection

cos(0.73) = 0.743
sin(0.73) = 0.669

→

cos Result

Model Prediction

0.743145

Calculator Says (cos)

0.743145

Error

0.00e+0

Machine precision!

from Hill Space
Weight Configuration

Selector: 1 Phase: 0π

Step-by-Step Solution:

1 Input: 42° → 0.733 rad

2 Phase shift: 0.733 + 0.000 = 0.733

3 cos(0.733) = 0.743 , sin(0.733) = 0.669

4 Result: 0.743 × 1.000 + 0.669 × 0.000 = 0.743

1

1

-1

-1

0°

90°

Convert to complex128 to handle negative bases with fractional exponents

x_complex = x.to(torch.complex128)

result = torch.prod(torch.pow(x_complex, W.unsqueeze(0)), dim=1)

return result.real

def unit_circle_primitive(angle, weights):

W = torch.tanh(weights[0]) * torch.sigmoid(weights[1])

Extract weights for selection and phase shift

selector = W[0] # [-1,1]: -1=sin, +1=cos, 0=mix

phase_shift = W[1] * math.pi # Phase shift in radians

Apply phase shift

shifted_angle = angle + phase_shift

Compute unit circle components

cos_comp = torch.cos(shifted_angle)

While excellent for basic trigonometric selections, this primitive struggles with compound binary
operations, motivating the development of our trigonometric products primitive.

3.4 Trigonometric Products Primitive
The trigonometric product primitive demonstrates Hill Space's capability for complex discrete
selection by computing four fundamental trigonometric products simultaneously, then using a
2×2 weight matrix to select between them. This enables compound operations requiring two
angles: cos(θ₁+θ₂), sin(θ₁+θ₂), cos(θ₁-θ₂), and sin(θ₁-θ₂). Unlike the unit circle approach, this
primitive excels at complex compound selections emerging from trigonometric product
identities.

Input 1

30°

0.524 rad

+

Input 2

69°

1.204 rad

→

Trigonometric Products

cos_diff
0.777

cos_sum
-0.156

sin_diff
-0.629

sin_sum
0.988

2×2 Product Matrix

×

Weight Matrix

W[0]×W[1]
0.000

W[0]×(1-W[1])
1.000

(1-W[0])×W[1]
0.000

(1-W[0])×(1-W[1])
0.000

from Hill Space

=

Cosine Sum

Model Prediction

-0.156434

Calculator Says

-0.156434

Error

1.39e-16

Machine precision!

cos(30° + 69°)
from Hill Space

Step-by-Step Solution:

1 Compute trig components: cos(30°) = 0.866 , sin(30°) = 0.500

2 Compute trig components: cos(69°) = 0.358 , sin(69°) = 0.934

3 Compute four products: cos_diff = 0.777 , cos_sum = -0.156 sin_diff = -0.629 , sin_sum = 0.988

4 Apply weight matrix: 0.000 × 0.777 + 1.000 × -0.156 + 0.000 × -0.629 + 0.000 × 0.988 = -0.156434

sin_comp = torch.sin(shifted_angle)

Select component based on weight

return (cos_comp * (1 + selector) + sin_comp * (1 - selector)) / 2

def trigonometric_product_primitive(x, weights):

cos1, sin1 = torch.cos(x[:, 0:1]), torch.sin(x[:, 0:1])

cos2, sin2 = torch.cos(x[:, 1:2]), torch.sin(x[:, 1:2])

Four fundamental products

cos_diff = cos1 * cos2 + sin1 * sin2 # cos(θ₁-θ₂)

cos_sum = cos1 * cos2 - sin1 * sin2 # cos(θ₁+θ₂)

sin_diff = sin1 * cos2 - cos1 * sin2 # sin(θ₁-θ₂)

This primitive achieves high precision for compound operations, demonstrating Hill Space's
effectiveness across different selection complexity levels.

3.5 Primitive Design Philosophy
Hill Space enables two distinct approaches to complex operations: sequential composition of
simple selections and direct construction of sophisticated primitives. While sequential
approaches like implementing multiplication through repeated addition demonstrate
computational completeness, they introduce overhead that limits practical scalability.

The trigonometric product primitive exemplifies the superior alternative: batch-friendly discrete
selection. Rather than computing compound operations through iterative manipulations, the
primitive simultaneously calculates all fundamental components and uses Hill Space weights to
select the desired combination. This approach achieves complex operations in a single forward
pass.

4. Experiments
We conduct five experiments to validate Hill Space's theoretical properties and practical
capabilities. Having established the constraint framework and primitive formulations, we first
demonstrate the enumeration property through direct weight calculation, then show rapid
convergence through a complete division implementation, benchmark performance against
previous neural arithmetic approaches, characterize the fundamental precision limits achievable
with our primitives, and systematically validate initialization robustness across all our
mathematical primitives.

4.1 Direct Weight Enumeration
Before demonstrating Hill Space's training capabilities, we validate its fundamental enumeration
property: optimal weights for discrete operations can be calculated rather than learned. This
minimal implementation bypasses optimization entirely, directly setting Hill Space weights to
their theoretically optimal saturation values.

The enumeration approach transforms primitive discovery from training-dependent exploration
into direct mathematical calculation. Rather than hoping optimization converges to the correct

sin_sum = sin1 * cos2 + cos1 * sin2 # sin(θ₁+θ₂)

2×2 matrix selection: selects cos vs sin and sum vs diff

cos_component = weights[1] * cos_diff + (1 - weights[1]) * cos_sum

sin_component = weights[1] * sin_diff + (1 - weights[1]) * sin_sum

return weights[0] * cos_component + (1 - weights[0]) * sin_component

discrete selections, we can immediately verify what operations are possible within Hill Space's
constraint topology.

4.1.1 Complete Implementation

import sys

import numpy as np

class NeuralCalculator:

def __init__(self):

Hill Space weights: tanh(15) ≈ 1.0, sigmoid(15) ≈ 1.0

After constraint W = tanh(W_hat) * sigmoid(M_hat):

Addition/Multiply: [15, 15] → [1.0, 1.0] → x + y / x * y

Subtract/Division: [15, -15] → [1.0, -1.0] → x - y / x / y

self.weights = {

"add": np.array([[15.0, 15.0], [15.0, 15.0]], dtype=np.float16),

"sub": np.array([[15.0, -15.0], [15.0, 15.0]], dtype=np.float16),

"mul": np.array([[15.0, 15.0], [15.0, 15.0]], dtype=np.float16),

"div": np.array([[15.0, -15.0], [15.0, 15.0]], dtype=np.float16),

}

def compute(self, x, y, operation):

"""Neural computation with enumerated weights"""

W_hat, M_hat = self.weights[operation]

Hill Space constraint: W = tanh(W_hat) * sigmoid(M_hat)

W = np.tanh(W_hat) * (1 / (1 + np.exp(-M_hat)))

inputs = np.array([x, y])

if operation in ["add", "sub"]:

return np.dot(inputs, W) # Linear: x*w1 + y*w2

else: # mul, div

return np.prod(np.power(inputs, W)) # Exponential: x^w1 * y^w2

def main():

if len(sys.argv) != 4:

print("Usage: python neural_calc.py <num1> <op> <num2>")

sys.exit(1)

x, op_symbol, y = float(sys.argv[1]), sys.argv[2], float(sys.argv[3])

op_map = {"+": "add", "-": "sub", "x": "mul", "/": "div"}

if op_symbol not in op_map or (op_symbol == "/" and y == 0):

print(f"Invalid operation or division by zero")

sys.exit(1)

calc = NeuralCalculator()

predicted = calc.compute(x, y, op_map[op_symbol])

actual = {"add": x + y, "sub": x - y, "mul": x * y, "div": x / y}

[op_map[op_symbol]]

NOTE: This conceptual implementation uses float16 weights and standard exponentiation for
simplicity. For production precision, apply the Complex128 optimizations and snapping
activations described in Sections 3.2 and 2.4.

4.1.2 Enumeration Validation

This implementation demonstrates Hill Space's core theoretical property: when we understand
the constraint topology, optimal parameters become calculable. The saturated weights [±15,
±15] reliably produce discrete selections that approach [±1.0, ±1.0] asymptotically, reaching
values like 0.999999+ that enable precise arithmetic operations.

Running the enumerated calculator on test cases confirms impressive precision across all
operations:

The enumeration property enables systematic exploration of discrete selection spaces through
direct weight manipulation rather than optimization-dependent training. This establishes the
theoretical foundation that makes Hill Space's reliable convergence possible: the constraint
topology creates stable attractors at precisely the locations we can calculate in advance.

Having validated that optimal weights can be enumerated directly, we now demonstrate that
these same discrete selections emerge reliably through standard neural network training.

4.2 Learning Division in 60 Seconds
To demonstrate Hill Space's practical accessibility and rapid convergence, we present a
complete implementation that teaches neural networks to select division reliably and
consistently. This minimal example validates our theoretical framework while serving as an
accessible entry point for practitioners. Training completes in under 60 seconds on consumer
hardware without requiring GPU acceleration.

4.2.1 Complete Implementation

print(f"Neural: {x} {op_symbol} {y} = {predicted}")

print(f"Truth: {actual}")

print(f"Error: {abs(actual - predicted):.2e}")

if __name__ == "__main__":

main()

python neural_calc.py 42.7 + 13.3 → Neural: 56.0, Truth: 56.0, Error: 0.00e+00
python neural_calc.py 156.8 / -23.4 → Neural: -6.701, Truth: -6.701, Error: 2.84e-14

We provide the full implementation to ensure reproducibility and demonstrate that Hill Space's
power emerges from fundamental simplicity, not architectural complexity.

import torch

class Division(torch.nn.Module):

def __init__(self):

super().__init__()

self.W_hat = torch.nn.Parameter(torch.zeros(2, 1))

self.M_hat = torch.nn.Parameter(torch.zeros(2, 1))

def forward(self, x: torch.Tensor) -> torch.Tensor:

"""Exponential operation: x1^w1 * x2^w2"""

W = torch.tanh(self.W_hat) * torch.sigmoid(self.M_hat)

return torch.prod(torch.pow(x.unsqueeze(-1), W.unsqueeze(0)), dim=1)

def train_neural_division():

Setup: model, data, optimizer

model = Division()

optimizer = torch.optim.Adam(model.parameters(), lr=0.3)

loss_fn = torch.nn.MSELoss()

Goldilocks range: challenges precision without overwhelming gradients

train_x = torch.rand(64000, 2) * (10.0 - 1e-8) + 1e-8

train_y = train_x[:, 0:1] / train_x[:, 1:2] # Division targets

print("4 floating point numbers learning to induce division...")

for epoch in range(50):

for i in range(0, len(train_x), 64): # batch_size = 64

batch_x, batch_y = train_x[i:i+64], train_y[i:i+64]

loss = loss_fn(model(batch_x), batch_y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if epoch % 10 == 0:

with torch.no_grad():

full_loss = loss_fn(model(train_x), train_y)

print(f"Epoch {epoch:2d}: Loss = {full_loss.item():.12f}")

Test on extreme extrapolation (far outside training range)

test_cases = torch.tensor([[713.534, -0.13], [-0.252, -5244.0], [325751,

-161800]])

test_pred = model(test_cases)

test_true = test_cases[:, 0:1] / test_cases[:, 1:2]

for i, (inputs, pred, actual) in enumerate(zip(test_cases, test_pred,

test_true)):

a, b = inputs[0].item(), inputs[1].item()

pred_val, actual_val = pred.item(), actual.item()

mse = (pred_val - actual_val) ** 2

status = "✅" if mse < 1e-4 else "❌"

4.2.2 Hill Space Advantages in Practice

This implementation demonstrates the optimization characteristics detailed in Section 2.1:
aggressive learning rates, no data shuffling requirements, and no normalization. The division
example showcases Hill Space's practical accessibility while validating the theoretical
framework.

4.3 Comparison with iNALU
We compare our approach's performance against iNALU [Schlör et al., 2020], which provides
clear experimental protocols with standardized MSE evaluation, enabling direct comparison of
discrete selection convergence.

4.3.1 Experimental Setup

Datasets: Following iNALU protocol, we generate 64,000 samples for training and evaluation
per operation. Each operation uses interpolation (same distribution) and extrapolation (different
range) tasks.

Distributions Tested: Three distribution types with extrapolation scenarios:

Universal Training Distribution: Our experiments also employ a "Goldilocks distribution" U(1e-8,
10.0) that avoids numerical instability near zero while preventing gradient saturation at extreme
values. This range proves effective across all operations and primitives, enabling a single model
to generalize across diverse test distributions without retraining.

Training Configuration:

print(f"{a:.3f}/{b:.3f} = {pred_val:.6f} (true:{actual_val:.6f})

{status}")

Show learned weights approach [1.0, -1.0] for division

final_weights = torch.tanh(model.W_hat) * torch.sigmoid(model.M_hat)

print(f"\n🧠 Learned: {final_weights.flatten().tolist()}")

print(f"Target: [1.0, -1.0]")

if __name__ == "__main__":

train_neural_division()

U(-5,5): Trains on uniform[-5,5] and tests on uniform[-10,-5]
N(-3,3): Trains on normal(-3,3) and tests on normal(8,10)
E(0.8,0.5): Uses exponential distribution with parameters (0.8,0.5)

Optimizer: AdamWScheduleFree [Defazio et al., 2024] with lr=0.1 (vs iNALU's 0.001)

Evaluation Strategy: We conduct two complementary evaluations:

This tests whether our approach achieves discrete selection robustness across distributions.

4.3.2 Results

Our universal approach converged across all 10 seeds within 2 epochs, demonstrating
remarkable training stability. Distribution-specific training showed more variability and
occasional failures, highlighting the superior robustness of the Goldilocks distribution U(1e-8,
10.0) used in our universal training approach.

Table 4.3: Hill Space vs iNALU Performance (10 runs, Extrapolation MSE ± std)

Distribution Operation iNALU MSE Matched MSE Universal MSE

E(0.8,0.5) a + b 2e-15 ± 3e-17 2e-14 ± 2e-16 2e-14 ± 2e-16

E(0.8,0.5) a - b 1e-15 ± 2e-17 1e-14 ± 1e-16 1e-14 ± 1e-16

E(0.8,0.5) a × b 1e-15 ± 6e-17 5e-14 ± 2e-15 5e-14 ± 2e-15

E(0.8,0.5) a ÷ b 362.4 ± 1e+03 2e-12 ± 3e-13 2e-12 ± 3e-13

U(-5,5) a + b 4e-13 ± 3e-15 2e-13 ± 2e-15 2e-13 ± 2e-15

U(-5,5) a - b 9e-14 ± 5e-16 9e-14 ± 5e-16 9e-14 ± 5e-16

U(-5,5) a × b 1e-10 ± 9e-13 3e+03 ± 12.9 7e-12 ± 3e-14

U(-5,5) a ÷ b 0.23 ± 0.34 0.20 ± 0.02 2e-15 ± 1e-17

N(-3,3) a + b 9e-13 ± 5e-15 5e-13 ± 2e-15 5e-13 ± 2e-15

N(-3,3) a - b 2e-13 ± 8e-16 1e-11 ± 7e-12 2e-13 ± 9e-16

N(-3,3) a × b 3e-10 ± 2e-12 814.6 ± 2e+03 1e-11 ± 7e-14

N(-3,3) a ÷ b 2.7 ± 4.1 96.7 ± 305.4 3e-15 ± 2e-17

Note: Results averaged over 10 runs. Values in bold indicate degraded performance (MSE >
1e-2).

Batch size: 64, Epochs: 10
Loss: MSE, Auto stop threshold: MSE ≤ 10⁻¹⁰
No regularization, clipping, or reinitialization (unlike iNALU)
Snapping functions used to ensure no error from activations

1. Matched training: Train models on each specific distribution (following iNALU exactly)
2. Universal evaluation: Train one model on Goldilocks distribution U(1e-8, 10.0), then test

across all iNALU distributions without retraining

4.3.3 Discussion

The results demonstrate our approach's advantages across key performance metrics. The
universal model achieves sub-10⁻¹⁰ precision on all operations while requiring less than 5% of
iNALU's maximum training time (2 ± 0.5 out of 100 epochs) to converge with snapping
activations. Without snapping, convergence occurs within 8 epochs—demonstrating that Hill
Space naturally guides optimization toward discrete selections, with the primary bottleneck
being the asymptotic nature of activation functions rather than finding correct weights. Most
notably, universal training consistently outperforms distribution-specific training across all tested
operations and distributions.

4.4 Error Analysis and Attribution
To validate that Hill Space approaches fundamental precision limits, we quantify errors using
analytically perfect weights, isolating floating-point precision from implementation artifacts. We
analyzed 800 million operations against 50-digit precision Decimal ground truth to characterize
precision boundaries with statistical robustness.

Our analysis proceeds in two stages: first establishing the theoretical lower bounds for floating-
point arithmetic errors (Table 4.4.1), then measuring additional error introduced by different
stabilization methods for exponential primitives (Table 4.4.2). This second analysis reveals that
while Complex128 arithmetic adds negligible error (4.1e-24 for division), the log-space
stabilization approach suffers catastrophic precision loss with errors exceeding 10^15—possibly
explaining iNALU's [Schlör et al., 2020] convergence failures on division tasks.

Table 4.4.1: Floating-Point Precision Baseline
100M+ samples per operation/dtype, analytical weights vs high-precision ground truth

Operation Precision Mean Squared Error Max Error 99.99%ile Error

add Float32 5.25e-08 9.54e-07 9.54e-07

add Float64 2.0e-25 1.3e-23 1.3e-23

subtract Float32 5.25e-08 9.54e-07 9.54e-07

subtract Float64 2.9e-25 1.3e-23 1.3e-23

multiply Float32 7.38e-01 1.60e+01 1.59e+01

multiply Float64 7.9e-18 8.9e-16 2.2e-16

divide Float32 6.64e-08 4.27e+00 2.20e-08

divide Float64 3.4e-26 8.7e-19 5.2e-26

This table establishes the theoretical lower bound for floating-point arithmetic errors.

Table 4.4.2: Exponential Primitive Stabilization Errors
100M+ samples per operation/dtype, showing additional error each method introduces beyond
floating-point baseline

Operation Precision Method Additional MSE Max Error 99.99%ile Error

multiply Float32 Complex128 0.0 1.60e+01 1.59e+01

multiply Float32 Log-space 1.11e+15 1.02e+16 9.80e+15

multiply Float64 Complex128 5.8e-16 3.75e-14 2.22e-14

multiply Float64 Log-space 1.11e+15 1.02e+16 9.80e+15

divide Float32 Complex128 -9.6e-09 3.73e+00 1.19e-08

divide Float32 Log-space 3.21e+07 1.54e+15 2.51e+07

divide Float64 Complex128 4.1e-24 1.2e-16 3.3e-24

divide Float64 Log-space 3.21e+07 1.54e+15 2.51e+07

Methodology:

These results demonstrate that Complex128 arithmetic approaches theoretical optimality:
Float64 multiplication shows 5.8e-16 additional error (machine epsilon territory), while log-
space methods exhibit catastrophic 10^15 error amplification. Hill Space with Complex128
reaches the fundamental limits of floating-point computation.

4.5 Weight Initialization Analysis
To validate Hill Space's initialization robustness across all operations and primitives, we
conducted systematic evaluation across different initialization scales. Table 4.5 demonstrates
this initialization sensitivity across mathematical operations spanning arithmetic and
trigonometry. Models were trained for 10 epochs on the Goldilocks distribution U(1e-8, 10.0)
with learning rate 0.1, AdamWScheduleFree [Defazio et al., 2024] optimizer, and batch size 64,
then evaluated on extreme extrapolation range U(-1e4, 1e4). Snapping functions used to
ensure no error from activations.

Table 4.5: Impact of Weight Initialization (10 runs, Extrapolation MSE)

Ground truth computed with 50-digit precision Decimal arithmetic
Additional error = Method MSE - Analytical MSE (floating-point baseline)
Input range: U(-1e4, 1e4) matching extreme extrapolation experiments
Complex128 uses 128-bit complex arithmetic (two 64-bit floats)
Log-space uses iNALU-style log/exp transformations with stability clamping

Operation 0 0.02 1e-08 1.0 3.0 10.0

a + b 0.0 0.0 0.0 0.0 0.0 1e+07 ±
1e+07

a - b 0.0 0.0 0.0 0.0 0.0 2e+07 ±
2e+07

a × b 6e-16 ±
7e-18

6e-16 ±
7e-18

6e-16 ±
7e-18

6e-16 ±
7e-18

6e-16 ±
7e-18

4e+14 ±
5e+14

a ÷ b 0.0 0.0 0.0 0.0 0.0 954.6 ±
1e+03

a 0.0 0.0 0.0 0.0 0.0 7e+06 ±
8e+06

1/a 3e-07 ±
7e-07

2e-07 ±
6e-07

2e-07 ±
8e-07

7e-08 ±
2e-07

5e-08 ±
8e-08

0.20 ± 0.39

cos(θ) 0.0 0.0 0.0 0.0 3e-13 ±
5e-13

0.23 ± 0.27

sin(θ) 4e-09 ±
2e-09

4e-09 ±
2e-09

4e-09 ±
2e-09

1e-05 ±
3e-05

0.30 ±
0.17

0.33 ± 0.19

cos(θ₁+θ₂) 2e-10 ±
1e-10

2e-10 ±
1e-10

2e-10 ±
1e-10

2e-09 ±
2e-09

2e-08 ±
3e-08

0.35 ± 0.58

sin(θ₁+θ₂) 2e-14 ±
2e-14

2e-14 ±
1e-14

2e-14 ±
1e-14

2e-10 ±
1e-10

6e-09 ±
4e-09

0.10 ± 0.35

cos(θ₁-θ₂) 2e-10 ±
1e-10

2e-10 ±
1e-10

2e-10 ±
8e-11

8e-12 ±
9e-12

8e-12 ±
1e-11

0.31 ± 0.30

sin(θ₁-θ₂) 2e-10 ±
8e-11

2e-10 ±
1e-10

1e-10 ±
7e-11

2e-09 ±
1e-09

5e-08 ±
4e-08

0.36 ± 0.32

Note: Values in bold indicate degraded performance. Values shown as 0.0 are below machine
epsilon (< 1e-16) and displayed for clarity.

The results confirm Hill Space's robust initialization properties: excellent performance across all
10 seeds with reasonable initialization scales (0 to 1.0), with degradation only at extreme scales
(10.0) that effectively randomly pre-select operations before training begins.

4.6 Reproducibility
All code and interactive demonstrations are available at:

GitHub: https://github.com/justindujardin/hillspace
Interactive demos: https://hillspace.justindujardin.com

https://github.com/justindujardin/hillspace
https://hillspace.justindujardin.com/

The repository includes implementations of all primitives, training scripts reproducing the
experimental results, code for generating the paper figures, and interactive primitive widgets
used on the site.

5. Related Work
5.1 Neural Arithmetic Logic Units
Neural Arithmetic Logic Units (NALU) [Trask et al., 2018] first demonstrated that neural
networks could achieve systematic discrete selection through constrained weight
parameterizations. NALU introduced the key insight of constraining weights via W = tanh(Ŵ) ⊙
σ(M̂) to approximate discrete values in {-1, 0, +1}, enabling reliable extrapolation far beyond
training ranges. However, NALU suffered from training instability, particularly for division
operations, and could not handle negative inputs in multiplicative operations due to log-space
computation.

Improved NALU (iNALU) [Schlör et al., 2020] addressed these limitations through separate
weight matrices for different operations, mixed-sign multiplication capabilities, and enhanced
regularization strategies. Neural Arithmetic Units (NAU/NMU) [Madsen & Johansen, 2020]
took a modular approach with specialized units for different operations, achieving more reliable
convergence than the combined NALU architecture.

5.2 Alternative Approaches to Structured Neural
Selection
Beyond explicit arithmetic modules, researchers have explored translation-based methods
that treat discrete selection tasks as language translation problems [Lample & Charton, 2019],
achieving remarkable success on symbolic integration tasks. Graph Neural Networks like
GraphMR [Zhang et al., 2021] represent structured relationships to capture selection
dependencies. Meta-learning approaches [Lake et al., 2023] have demonstrated human-like
systematic generalization through compositional optimization procedures.

5.3 Systematic Generalization
The broader challenge of systematic generalization in neural networks has been extensively
studied [Lake & Baroni, 2018; Fodor & Pylyshyn, 1988]. Recent surveys [Testolin, 2024]
conclude that even state-of-the-art architectures struggle with systematic extrapolation and
compositional reasoning, highlighting the continued importance of specialized approaches for
discrete selection tasks.

Our work builds directly on NALU's constraint insight while systematically analyzing the
underlying topology that enables reliable discrete selection. Unlike previous approaches that

focused on architectural improvements, we isolate and characterize the constraint space itself,
enabling principled exploration of discrete selection primitives across different domains.

6. Conclusion
We set out to understand why neural networks struggle with arithmetic and discovered a
systematic framework for discrete selection in constrained parameter spaces. Hill Space—the
constraint topology W = tanh(Ŵ) ⊙ σ(M̂)—transforms how we approach problems requiring
reliable convergence to specific discrete outcomes.

Our key contributions:

Enumeration Property: Optimal weights for discrete operations can be calculated rather than
learned, transforming primitive discovery from training-dependent exploration to direct
mathematical calculation.

Exponential Primitive Stabilization: Complex128 arithmetic eliminates catastrophic precision
loss in exponential operations (reducing error by 15 orders of magnitude compared to log-space
methods), enabling reliable multiplication and division at machine precision.

The philosophical question of what constitutes "doing math" versus "selecting mathematical
transformations" becomes central to understanding Hill Space. If humans don't actually perform
multiplication through repeated addition but instead select the appropriate transformation
directly, Hill Space may reflect more fundamental cognitive patterns than initially apparent.

We've demonstrated that appropriate constraint design combined with systematic exploration
can guide neural networks toward specific discrete capabilities. Hill Space offers a methodology
for finding more such capabilities—in mathematics and potentially beyond.

7. Acknowledgments
We thank the broader machine learning community for foundational work in systematic neural
selection, particularly the NALU team at DeepMind whose pioneering insights enabled this
research direction. We also appreciate Daniel Schlör, Markus Ring, and Andreas Hotho for their
iNALU evaluation, whose clearly documented experimental setup enabled meaningful
performance benchmarking.

Special thanks to Claude (Anthropic) for invaluable assistance in theoretical exposition, helping
clarify complex topological concepts and constraint optimization principles that significantly
improved the presentation of this work. Claude also contributed to the implementation of the
visualizations.

We also acknowledge the open-source community for tools and frameworks that made rapid
experimentation possible, enabling the systematic exploration of discrete selection spaces
described in this work.

8. References
Defazio, A., Yang, X. A., Mehta, H., Mishchenko, K., Khaled, A., & Cutkosky, A. (2024). The
Road Less Scheduled. arXiv preprint arXiv:2405.15682.

Feng, W., Liu, B., Xu, D., Zheng, Q., & Xu, Y. (2021). GraphMR: Graph neural network for
mathematical reasoning. Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 3077-3088.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical
analysis. Cognition, 28(1-2), 3-71.

Lake, B. M., & Baroni, M. (2018). Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. Proceedings of the 35th International
Conference on Machine Learning, 2873-2882.

Lake, B. M., & Baroni, M. (2023). Human-like systematic generalization through a meta-learning
neural network. Nature, 623(7985), 115-121.

Lample, G., & Charton, F. (2019). Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412.

Madsen, A., & Johansen, A. R. (2019). Measuring arithmetic extrapolation performance. arXiv
preprint arXiv:1910.01888.

Madsen, A., & Johansen, A. R. (2020). Neural arithmetic units. arXiv preprint arXiv:2001.05016.

Schlör, D., Ring, M., & Hotho, A. (2020). iNALU: Improved neural arithmetic logic unit. Frontiers
in Artificial Intelligence, 3, 71.

Testolin, A. (2024). Can neural networks do arithmetic? A survey on the elementary numerical
skills of state-of-the-art deep learning models. Applied Sciences, 14(2), 744.

Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., & Blunsom, P. (2018). Neural arithmetic logic
units. Advances in Neural Information Processing Systems, 31.

